热门搜索:
product display
高功率半导体激光器的改进使下游激光器技术的发展成为可能;在下游激光器技术领域,半导体激光器被用于激发(泵浦)掺杂晶体(二极管泵浦固态激光器)或掺杂光纤(光纤激光器)。二极管泵浦固态和光纤激光器维修
?
光纤激光器。光纤激光器提供了一种转换高功率半导体激光器亮度的更加有效的方式。尽管波长复用光学器件可以将亮度相对较低的半导体激光器转换为较亮的半导体激光器,但这却是以增加光谱宽度和光学机械复杂度为代价的。光纤激光器已被证明在光度转换中特别有效。二极管泵浦固态和光纤激光器维修
在20世纪90年代引入的双包层光纤使用由多模包层环绕的单模光纤,可以将更高功率,更低成本的多模半导体泵浦激光器高效地投入光纤,从而创造出一种更经济的方式来将高功率半导体激光器到转换成更明亮的激光器。对于掺杂镱(Yb)的光纤而言,该泵浦激发了以915 nm为中心的宽吸收或976 nm左右的较窄带特征随着泵浦波长接近光纤激光器的激射波长,所谓的**缺陷就会减少,从而效率较大化,余热消散量较小化。二极管泵浦固态和光纤激光器维修
虽然半导体激光器提供高效率,低成本的激光能源,但有其有两个关键限制:它们不储存能量、亮度也有限。基本上这两种激光器需要用于许多应用:其中一个用于将电转换成激光发射,另外一个则用来增强该激光发射的亮度。二极管泵浦固态和光纤激光器维修
blob
二极管泵浦固体激光器。在二十世纪八十年代后期,用半导体激光器泵浦固体激光器的应用开始在商业应用中逐渐普及。二极管泵浦固体激光器(DPSSL)较大地缩小了热管理系统(主要是循环冷却器)的尺寸和复杂性,并且获得了历来结合了弧光灯用于泵浦固态激光晶体的模块。二极管泵浦固态和光纤激光器维修
半导体激光器波长的选择是基于它们与固态激光增益介质的光谱吸收特性的重叠来进行的;与弧光灯的宽带发射光谱相比,较大地降低了热负荷。由于1064nm钕基激光器的普及,20多年以来,808nm泵浦波长成为半导体激光器中数量较大的波长。二极管泵浦固态和光纤激光器维修
随着多模半导体激光器亮度的提高以及在2000年中期能够用体布拉格光栅(VBGs)稳定窄发射线宽的能力,实现了*二代改进的二极管泵浦效率。880nm左右的较弱和光谱窄的吸收特征成为了高亮度泵浦二极管的研究热点,这些二极管能实现光谱稳定。这些更高性能的激光器能够直接激发钕中的激光上能级4F3 / 2,减少了**缺陷,从而改善了平均功率更高的基模提取,否则将会受到热透镜的限制。二极管泵浦固态和光纤激光器维修
到2010年初,我们目睹了单横模1064nm激光器及相关系列频率转换激光器在可见光和紫外波段工作的大功率缩放趋势。由于Nd:YAG和Nd:YVO4较长的高能态寿命,这些DPSSL的Q开关操作提供了高脉冲能量和峰值功率,非常适合于烧蚀材料加工和高精度微加工应用。二极管泵浦固态和光纤激光器维修
光纤激光器和二极管泵浦固体激光器都依赖于二极管激光亮度的改进。一般来说,随着二极管激光器亮度的不断改善,它们泵浦的激光器功率比例也越来越大。半导体激光器的亮度提升有利于促进更高效的亮度转换。二极管泵浦固态和光纤激光器维修
正如我们所期待的那样,空间和光谱亮度对未来的系统来说将是必要的,这将使固体激光器中具有窄吸收特征的低**缺陷泵浦和直接半导体激光器应用的密集波长多路复用方案成为可能。二极管泵浦固态和光纤激光器维修
光纤激光器选用的工作介质具有光纤的方式,其特性要遭到光纤渡导性质的影响。
深圳有关维修光纤激光器的原理和特性?
进入到光纤中的泵浦光一般具有多个形式,而信号光电可能具有多个形式,不同的泵浦形式对不同的信号形式发生不同的影响,使得光纤激光器和扩大器的剖析比较复杂,在许多情况下难以得到解析解,不得不借助于数值核算。光纤中的掺杂散布对光纤激光器也发生很大的影响,为了使介质具有增益特性,将工作离子(即杂质)掺杂进光纤。深圳有关维修光纤激光器的原理和特性
一般情况下,工作离子在纤芯中均匀散布.但不同形式的泵浦光在光纤中的散布对错均匀的。
因此,为了进步泵浦功率,应该尽量使离子散布和泵浦能量的散布相重合。在对光纤激光器进行剖析时,除了根据前面评论的激光器的一般原理,还要考虑其本身特色,引进不同的模型和选用特别的剖析办法,以到达较好的剖析效果。深圳有关维修光纤激光器的原理和特性
和传统的固体、气体激光器相同,光纤激光器也是由泵浦源、增益介质、谐振腔三个基本要素组成。
泵浦源一般选用高功率半导体激光器,增益介质为稀土掺杂光纤或一般非线性光纤,谐振腔能够由光纤光栅等光学反应元件构成各种直线型谐振腔,也能够用耦合器构成各种环形谐振腔。泵浦光经恰当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后构成粒子数回转或非线性增益并发生自发发射。所发生的自发发射光饱尝激扩大和谐振腔的选模作用后,终究构成稳定激光输出。深圳有关维修光纤激光器的原理和特性